The tree and the labyrinth. Decision trees.

Authors

  • Manuel Molina Gastroenterology Service La Paz University Children's Hospital, Madrid.

DOI:

https://doi.org/10.30445/rear.v16i12.1298

Keywords:

decision trees, regression, classification, machine learning

Abstract

A decision tree is a machine learning model that is used to estimate a target variable based on several input variables. This target variable can be either numerical (regression trees) or nominal (classification trees). The methodology for constructing decision trees for regression and classification is described, as well as their interpretation.

Author Biography

Manuel Molina, Gastroenterology Service La Paz University Children's Hospital, Madrid.

Especialista en Pediatrí­a y sus áreas Especí­ficas desde 1991. Actualmente ejerzo en el Servicio de Gastroenterologí­a del Hospital Infantil Universitario La Paz, de Madrid.
Además, pertenezco al Grupo de Trabajo de Pediatrí­a Basada en la Evidencia, grupo compartido entre la Asociación Española de Pediatrí­a y la Asociación Española de Pediatrí­a de Atención Primaria.

References

- Tree-based methods. En: James G, Witten D, Hastie T, Tibshirani R, eds. An introduction to statistical learning with applications in R. Springer Science+Business Media. New York, 2013; 303-35.

- Supervised learning. En: Mailund T, ed. Beginning data science in R 4. Data analysis, visualization, and modelling for the data scientist, 2ª ed. Apress Media, LLC. New York, 2022; 178-238.

Published

2025-01-02

How to Cite

Molina, M. (2025). The tree and the labyrinth. Decision trees. Revista Electrónica AnestesiaR, 16(12). https://doi.org/10.30445/rear.v16i12.1298

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>